Landsat 8 Observing Earth with a clearer view

An ash plume drifts from Paluweh volcano in Indonesia. Image taken April 29, 2013 from the Landsat Data Continuity Mission (LDCM, now Landsat 8) Operational Land Imager instrument. Courtesy NASA.
An ash plume drifts from Paluweh volcano in Indonesia. Image taken April 29, 2013 from the Landsat Data Continuity Mission (LDCM, now Landsat 8) Operational Land Imager instrument. Courtesy NASA.

The latest in the Landsat series of Earth observation satellites, Landsat 8, officially begins its mission on May 30 to extend an unparalleled four-decade record of Earth’s land surface as seen from space. The Landsat program is a joint effort between the U.S. Geological Survey and NASA.

NASA launched the Landsat Data Continuity Mission satellite on February 11. Since then, NASA mission engineers and scientists, with USGS collaboration, have been putting the satellite through its paces – steering it into its orbit, focusing the instruments, calibrating the detectors, and collecting test images. Now fully mission-certified, the satellite will be transferred to USGS operational control and renamed  Landsat 8.

As the world’s population surpasses seven billion people, the impact of human society on the planet is increasing. The continuation of Landsat’s four-decade look at Earth will help monitor those impacts and more accurately forecast future environmental change.

A big picture, but more

Landsat images from space are not just pictures. They contain many layers of data collected at different points along the visible and invisible light spectrum. Consequently, Landsat images can show where vegetation is thriving and where it is stressed, where droughts are occurring, and where wildland fire is a danger.

Landsat satellites give us a view as broad as 12,000 square miles per scene while describing land cover in units the size of a baseball diamond. From a distance of more than 400 miles above the earth surface, a single Landsat scene can record the condition of hundreds of thousands of acres of grassland, agricultural crops, or forests.

Landsat images reveal subtle, gradual changes, such as Wyoming rangelands greening up after a drought, as well as massive landscape changes that occur in rapidly growing urban areas. Landsat can also provide broad assessments of sudden natural or human-induced disasters, such as the number of acres charred by a forest fire or the extent of tsunami inundation. Landsat data have been used to monitor water quality, glacier recession, sea ice movement, invasive species encroachment, coral reef health, land use change, deforestation rates, and population growth.

LDCM image acquired March 22, 2013. LDCM looks back to its launch site at Vandenberg Air Force Base. Courtesy NASA.

LDCM image acquired March 22, 2013. LDCM looks back to its launch site at Vandenberg Air Force Base. Courtesy NASA.

Landsat 8 brings a clearer view  

Landsat 8 is about the size of a delivery truck with a 30-foot-long deployed sheet of solar panels. Stocked with a 10-year supply of fuel, the satellite travels at a speed of 17,000 miles per hour.  It carries two highly-sensitive observation instruments, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). Advanced technology increases the reliability and sensitivity of these instruments, while the improved measurements are still compatible with the past Landsat data record.

The technical capabilities of Landsat 8 move forward in three areas in comparison to Landsat 7:  increased spectral coverage; higher data precision (the ultimate resolution is not changed); and increased quantity of data collection (60% more scenes per day).

Landsat 8 will orbit Earth once every 99 minutes at an average altitude of 438 miles (705 kilometers),  repeating the same ground track every 16 days.  As Landsat 8 joins Landsat 7 in imaging the Earth, researchers and natural resource managers will once again be able to receive Landsat data every eight days for any given location. Many Landsat users depend on a short repeat cycle for prompt data on resources such as agricultural crops, forests, and water.  The USGS, NASA, and aerospace contractors have worked diligently to ensure that Landsat 8 would be operational in time for the 2013 North American growing season.

ven in notoriously warm Phoenix, AZ, the Thermal Infrared Sensor (TIRS) aboard LDCM (now Landsat 8) shows cooler (darker) areas of irrigated agriculture (lower center of image) and mountain forests to the North. Courtesy NASA.
ven in notoriously warm Phoenix, AZ, the Thermal Infrared Sensor (TIRS) aboard LDCM (now Landsat 8) shows cooler (darker) areas of irrigated agriculture (lower center of image) and mountain forests to the North. Courtesy NASA.

Free data for innovation

Beginning May 30, Landsat 8 data will be available from the USGS data archive free of charge. The Department of the Interior and USGS policy of unrestricted access and free distribution of Landsat data encourages researchers everywhere to develop practical applications of the data.  Special-purpose applications of Landsat data can serve commercial endeavors in agriculture and forestry; they can enable land managers in and out of government to work more efficiently; they can assist scientists in defining and assessing critical environmental issues. Ready access to authoritative Landsat images provides a reliable common record of Earth conditions that advances the mutual understanding of environmental challenges worldwide by citizens, researchers, and decision makers.

Two visually compelling examples of commercial systems that access the long record of consistent Landsat data to document land cover change around the globe are Google Timelapse and ESRI Change Matters.

Source

2010 Was the Year of LandSlides

NASA’s TRMM satellite confirms 2010 landslides

Around midnight on Aug. 8, 2010, a violent surge of loosened earth roared down mountain slopes and slammed into quietly sleeping neighborhoods in Zhouqu County in Gansu, China. The catastrophic mudslides — the deadliest in decades according to state media — buried some areas under as much as 23 feet (7 meters) of suffocating sludge. 1,765 people died. Property damages totaled an estimated $759 million. Cutting from right to left, this detailed image, from DigitalGlobe’s WorldView-2 satellite, shows the largest slide in the lower part of the city on Aug. 10, 2010. Credit: Image from WorldView-2 © 2010 by DigitalGlobe

 

A NASA study using TRMM satellite data revealed that the year 2010 was a particularly bad year for landslides around the world.

A recent NASA study published in the October issue of the Journal of Hydrometeorology compared satellite rain data from NASA’s Tropical Rainfall Measurement Mission (TRMM) to landslides in central eastern China, Central America and the Himalayan Arc, three regions with diverse climates and topography where rainfall-triggered landslides are frequent and destructive hazards to the local populations.

The work, led by Dalia Kirschbaum, a research physical scientist in the Hydrological Sciences Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Md., is part of an ongoing effort to catalog worldwide rainfall-triggered landslides—one of the world’s lesser known but often catastrophic natural hazards. Locating them is a step in an effort to be able, one day, to predict and warn.

This work was funded by the upcoming Global Precipitation Measurement (GPM) mission, which will improve upon current rainfall datasets, with real-time assessment of rainfall accumulations that lead to landslide triggering. The GPM Core satellite is set to launch in 2014 and will extend coverage of precipitation measurements using a constellation of satellites to deliver a global rain dataset every three hours.

For Detail : http://www.nasa.gov/gpm